MODIS, VIIRS, Landsat, and SeaWiFS Pre-launch and On-orbit Calibration Experience, and Lessons Learned for CLARREO

Jack Xiong, Jim Butler, Brian Markham, Chuck McClain ,and Steve Platnick

Sciences and Exploration Directorate, NASA/GSFC Greenbelt, MD 20771

CALRREO Solar Science Team Meeting
National Institute of Aerospace, Hampton, VA
January 29-30, 2009

Outline

- Instrument Background
- Instrument Calibration and Characterization
 - MODIS
 - VIIRS
 - Landsat-7 ETM+
 - SeaWiFS
- Lessons Learned
- CLARREO: A Calibration Benchmark for Future Earth Observing Missions
- Summary

MODIS Instrument

- 20 Reflective solar bands (RSB): 0.41-2.2μm
- 16 Thermal emissive bands (TEB): 3.7-14.4μm
- · 3 spatial resolutions at nadir: 250m, 500m and 1000m
- 4 Focal Plane Assemblies (FPA): VIS, NIR, SMIR, LWIR
- 5 On-Board Calibrators: SD, SDSM, SRCA, BB, and SV port

- Two MODIS (Terra and Aqua): Complementary morning and afternoon observations
- · A broad range of applications: land, oceans, and atmosphere

VIIRS Instrument

Multi-spectral crosstrack scanning instrument

- Rotating telescope
- Half angle mirror (HAM) for de-rotation

Imagery and radiometry

- "Fine" (imaging) 0.4km resolution (nadir)
- "Moderate" (radiometry) 0.8km resolution

22 spectral bands (0.4–12.5µm)

- 15 "reflective" VNIR-SWIR bands 0.4-2.3µm
- 3 "mixed" MWIR bands 3.5 -4.1µm
- 4 "emissive" LWIR bands 8.4-12.5µm
- Automatic dual VNIR & triple DNB gains

EDR-dependent swath widths

1700, 2000, and 3000 km

Launch: Jan. 2011

Heritage Sensors: MODIS, SeaWiFS, THEMIS, TRMM VIRS, ETM+

MODIS and VIIRS

r						
	VIIRS Band	Spectral Range (um)	Nadir HSR (m)	MODIS Band(s)	Range	HSR
	DNB	0.500 - 0.900				
d	M1	0.402 - 0.422	750	8	0.405 - 0.420	1000
J	M2	0.436 - 0.454	750	9	0.438 - 0.448	1000
Ĭ	М3	0.478 - 0.498	750	3 10	0.459 - 0.479	500
4	IVIS	0.476 - 0.496	750	3 10	0.483 - 0.493	1000
Ţ	M4	0.545 - 0.565	750	4 or 12	0.545 - 0.565	500
Υ					0.546 - 0.556	1000
	l1	0.600 - 0.680	375	1	0.620 - 0.670	250
Ţ) M5	0.662 - 0.682	750	13 or 14	0.662 - 0.672	1000
\mathcal{L}					0.673 - 0.683	1000
	М6	0.739 - 0.754	750	15	0.743 - 0.753	1000
	12	0.846 - 0.885	375	2	0.841 - 0.876	250
Ţ				16 or 2	0.862 - 0.877	1000
4	M7	0.846 - 0.885	750	10 01 2	0.841 - 0.876	250
	М8	1.230 - 1.250	750	5	SAME	500
	М9	1.371 - 1.386	750	26	1.360 - 1.390	1000
	13	1.580 - 1.640	375	6	1.628 - 1.652	500
Ī	M10	1.580 - 1.640	750	6	1.628 - 1.652	500
Ī	M11	2.225 - 2.275	750	7	2.105 - 2.155	500
ı	14	3.550 - 3.930	375	20	3.660 - 3.840	1000
Ī	M12	3.660 - 3.840	750	20	SAME	1000
ľ					3.929 - 3.989	1000
¢) M13	3.973 - 4.128	750	21 or 22	3.929 - 3.989	1000
ľ	M14	8.400 - 8.700	750	29	SAME	1000
Ī	M15	10.263 - 11.263	750	31	10.780 - 11.280	1000
ſ	15	10.500 - 12.400	375	31 or 32	10.780 - 11.280	1000
	15	10.000 - 12.700	3/3	01 01 02	11.770 - 12.270	1000
Ī	M16	11.538 - 12.488	750	32	11.770 - 12.270	1000

O Dual gain band

Changes from MODIS

- Use of a Telescope instead of rotating mirror
- Use of dual gain bands
- Removed CO2 bands
- Deleted Spectro-Radiometric Assembly
- Added pixel aggregation
- Guaranteed End-Of-Life Performance Spec
- Solar Diffuser Screen with Earthshine shade

Landsat-7 ETM+

- Landsat-7 launched 4/15/99
 - 705km 10:00AM descending
- Whiskbroom scanner 8 bit
- 8 spectral bands
 - 4 VNIR (30 meters)
 - 2 SWIR (30 meters)
 - 1 TIR (60 meters)
 - 1 Panchromatic (15 meters)
- On-board calibrators
 - Diffuser (FASC)
 - Internal calibrator
 - Shutter
 - Lamps
 - Blackbody
- 185 km swath; 16 day repeat

Landsat Data Continuity Mission OLI

- Dec 2012 launch
- Pushbroom 12 bit
- 9 spectral bands
 - 5 VNIR (30 meters)
 - 2 SWIR (30 meters)
 - 1 Cirrus detection (30 meters)
 - 1 Panchromatic (15 meters)
- On-board calibrators
 - Diffuser
 - Working
 - Pristine
 - Internal lamps 3 pairs
 - Shutter

SeaWiFS Instrument

- September 1997 to present
- Orbit: Noontime, sun-synchronous descending
- Instrument Components & Spectral Bands;
 - Fore optics: rotating telescope
 - 8 wavelengths from 412 to 865 nm
 - 4 detectors/bands in TDI w/ bilinear gains
 - 4 commandable gain settings
 - Depolarizer: polarization sensitivity ~0.25%
 - 10 bit digitization
- Spatial Resolution
 - 1.1 km local area coverage
 - Swath: 2800 km
 - 4.4 km global area coverage
- Swath 1500 km

Instrument Calibration and Characterization

- MODIS, (VIIRS), Landsat, SeaWiFS
- VIS and NIR
 - Radiometric Calibration Activities
- Pre-launch and On-orbit Calibration
 - Approaches and Traceability

MODIS Pre-launch Calibration

Radiometric

- Calibration source: SIS-100 (NIST traceable) at multiple radiance levels (lamp configurations)
- Calibration parameters: gain, nonlinearity, SNR, dynamic range, gain dependence on the instrument temperatures
- Three instrument temperatures for thermal vacuum test
- Primary and redundant electronics
- Solar diffuser BRDF calibration (NIST traceable)
- Others (all system level)
 - Spectral: relative spectral response (RSR)
 - Spatial: pointing, band-to-band registration (BBR)
 - Response versus scan angle (RVS)
 - Polarization sensitivity

MODIS On-orbit Calibration

SD/SDSM Calibration

VIIRS Pre-launch and On-orbit Calibration

- Pre-launch calibration and characterization
 - Similar to MODIS (FU1 on NPP TV test scheduled for March/April 2009)
 - Ambient and most pre-TV tests completed
 - Experience and lessons from MODIS
 - Polarization characterization (PSA and polarization sheet)
 - SIS stability monitor
- On-orbit calibration and characterization
 - Similar to MODIS using SD/SDSM
 - SD observations with an attenuation screen every orbit
 - Monthly lunar observations via maneuvers (NPP/VIIRS)

Landsat-7 ETM+ Pre-launch Calibration

Radiometric

- Calibration source: SIS-100; SIS-48" (NIST traceable)
 Landsat Transfer Radiometer (VNIR monitor)
- Three instrument temperatures for thermal vacuum test
- Internal Lamp characterization; noise characterization
- Solar diffuser BRDF calibration
- Others
 - Spectral: relative spectral response (RSR)
 Combination of component level measurements
 - Spatial: alignment, band-to-band registration (BBR), Modulation Transfer Function (MTF)

Landsat-7 ETM+ On-orbit Calibration

- Solar Diffuser measurements monthly
- Internal Calibrator (IC) measurements every scan
 - Shutter and primary lamp
 - Secondary lamp measurements ~monthly
- Vicarious measurements ~ monthly
- Desert (4 sites)
 measurements ~ 2/month

Internal Calibrator (IC)

Landsat Data Continuity Mission OLI Calibration

Pre-Launch

- 100 cm integrating sphere (NIST traceable)
 - Transfer sphere calibrated at NIST
 - Both spheres monitored with transfer radiometers
- Solar Diffuser BRDF characterization (NIST traceable)
- Heliostat-based transfer to orbit test
- Polarization Sensitivity & Stray Light Tests

On-Orbit

- Solar diffusers
 - Weekly primary diffuser
 - Twice yearly pristine diffuser
- Lamps
 - Daily working lamps
 - Twice-monthly reference lamps
 - Twice yearly pristine lamps
- Lunar observations monthly (~7 ° phase)
- Vicarious measurements ~ monthly
- Desert sites ~2/monthly

SeaWiFS Calibration: the Ocean Color Cal/Val Paradigm

- Pre-launch laboratory
 - Linearity, T sensitivity, polarization sensitivity, spectral response functions, RVS function, bright target response, et al.
- Post-launch on-orbit
 - Daily solar diffuser views to track short t sensitivity variations
 - Monthly lunar views at ~7° lunar phase to track long t sensitivity variations
 - Daily cal pulse to track instrument electronics stability
 - Vicarious cal gain adjustments using MOBY off Lanai, HI

SeaWiFS On-orbit Calibration: System + Algorithm

- MOBY (marine optical buoy) for bands 1-6
 - In-water system moored off Lanai in "clear water"
 - MOBY time series since 1996
 - Hyperspectral data over VNIR
 - Calibration and characterization
 - Characterized using NIST's travelling SIRCUS
 - NIST-traceable cals pre- and post-deployment
 - Monthly measurements with stable, diver-deployed lamps verified using NIST designed radiometers
 - Daily scans of 3 internal sources

- Bands 7 (765nm) and 8 (865nm) to determine aerosol plus Rayleigh-aerosol term in LT
- B7 adjusted to match marine haze model and B8 aerosol radiances over open ocean.
- Aerosol type and single scattering reflectances for VIS/NIR bands derived from model.
- Aerosol type and 865 nm radiances (aerosol amount) used to determine aerosol plus Rayleigh-aerosol term for VIS bands
- No vicarious calibration correction applied to band 8

Lessons Learned (I)

- Having a science team (in addition to project team) supported several years before and after launch is essential in achieving mission overall success
 - Design requirements (spectral, spatial, and radiometric), SRR, PDR, CDR
 - Pre-launch calibration and characterization
 - Post-launch validation
- Establishing good communications is critical
 - Seamless interface among all parties; trusting working relationship
- A dedicated calibration team, in support of project, needs to work closely with the contractor and the science team for the instrument pre-launch calibration and in planning for post-launch validation
 - Independent calibration and verification
 - Vigilance and knowledge
 - Involving NIST in a review and perhaps pre-launch validation capacity
- Calibration/characterization effort needs to be sustained over the entire mission
 - Track/correct sensor on-orbit changes

Lessons Learned (II)

- Calibration standards and traceability
 - Calibration methodologies/approaches (NIST involvement)
 - Unbroken SI traceable calibration chain (pre- and post-launch)
- Calibration plan and test procedure
 - Extensive and complete review by cal team (including NIST and peer cal experts)
 - GSE qualification/characterization
- A complete uncertainty (error budget) analysis
 - Component level to system level
- Comprehensive sensor calibration and characterization activities
 - Component-level; sub-system level; end-to-end test
 - "Test as It Flies" under simulated on-orbit operating conditions
- Eliminate sensor "undesirable features" if possible
 - Non-physics based algorithm correction won't work (more characterization effort)
 - Examples from MODIS

Lessons Learned (III)

- Documentation and data records
 - Sensor test data, tools, and results
 - Algorithm reviews (L1 in EOS-speak, SDR in NPP/NPOESS-speak)
 - Progress report and instrument status update for community reference
 - Technical memos, conference presentations, peer reviewed journals on topics of instrument operation and calibration, and lessons learned

CLARREO as a Calibration Benchmark for Future Earth Observing Missions

Vicarious calibration

- To date, the majority of satellite remote sensing instrument comparisons have been comparisons and not calibrations or cross-calibrations.
 - Comparisons serve the important purpose of checking instrument relative scales except for those instruments with non-existent or malfunctioning cal. systems.
 - Usually comparison agreements are within the combined uncertainties of the instruments' measurements.
 - Therefore, comparisons are not sufficiently rigorous to be used to validate (or possibly change) instruments' calibration coefficients.
- Rule of thumb for laboratory calibrations is to use a reference or test instrument which has a 3x or lower measurement uncertainty. A similar goal should be adopted for onorbit instrument comparisons.
- CLARREO on-orbit measurement uncertainties would provide the high accuracy/low uncertainty to confidently validate satellite instrument calibrations.

V/C Method	Expected Uncertainty
Artificial Test Sites	2.8% (reflectance) 1.8 % (radiance)
Moon	2%

CLARREO as a Calibration Benchmark for Future Earth Observing Missions

- CLARREO measurements of the Moon in the VIS through SWIR will increase the viability of using the Moon for radiometric calibration
 - Current status:
 - Vis/nir/swir lunar irradiance model absolute accuracy is 5 to 10%
 - Dependence of irradiance model on lunar phase being characterized

SeaWiFS: Monthly lunar views near or at ±7° lunar phase enables tracking of on-orbit responsivity to <0.1% over the SeaWiFS mission.

MODIS: Monthly lunar views near or at ±55° lunar phase

- High accuracy radiometric measurements of Moon by CLARREO
 - Due diligence needed to identify and quantify all uncertainties in using the Moon as an on-orbit calibration target

Summary

- CLARREO mission objective is to produce climate benchmarks through high accuracy, absolute on-orbit measurements
 - Measurement uncertainties require that the calibration SI traceability chain must be minimized
- Lessons from other Earth-observing sensors
 - Instrumentation and approaches are needed to establish absolute SI on-board
 - A comprehensive calibration plan and associated test procedures are needed before any calibration and characterization measurements
 - For the reflected solar region, significant improvement over current calibration uncertainty qualifies CLARREO to be used as an on-orbit calibration standard for other research and operational instruments.
 - CLARREO lunar views make the Moon a potentially viable on-orbit target for instrument calibration and comparison